A few of us CAD folks are experimenting with solid-state drives (SSDs), since they give fast boots and quick launches of Solid Edge (and most other high-end software programs). However, SSDs cost more than traditional hard disk drives (HDDs), so only a lucky few are getting them.
SSDs use solid-state memory to store data and provides access just like a traditional block i/o HHD. However, SSDs use microchips to retain the data, which contain no moving parts. In contrast, HDD are electromechanical devices with spinning disks and movable read/write heads. The advantage is SSDs are typically less susceptible to physical shock, are silent, and have lower access time and latency. Because SSDs use the same interface as hard disk drives, they can easily replace them in most applications.
The folks at Dell pointed out to me that:
For mobile workstations, the best configuration and for a relatively inexpensive solution, the SSD minicard is a good alternative. The OS (boot) drive is the minicard and a regular HDD is the data drive for application data. With this solution you get the fast boot time of the SSD and the large capacity (and less expense) of the HDD. Also, SSDs, with no moving parts, have the highest durability with up to 15 times more shock and impact resistance than standard hard drives. Hard disk drives (HDDs) have moving parts, which makes them more vulnerable to certain impacts, vibrations and other movements that can lead to drive failure and potential data loss. SSDs, shock-mounted hard drives and free-fall sensor drives can all help reduce the risk of failure.
If being a happier employee doesn’t sell your boss on an SSD drive, tout the benefits of working faster while having fewer failures due to accidentally slapping your computer during a slow boot. Read more about Solid Edge and hardware configurations at the Siemens PLM blog.
Author: Mark Burhop – Programs Director, Velocity Technology Ecosystem – Siemens PLM.
Find Mark Burhop on Twitter http://twitter.com/burhop