RAID is an option you'll likely want to consider for a new workstation, depending on the model you choose. The acronym stands for Redundant Array of Independent Disks, and refers to the redundancy that provides reliability and data security. By far, the most common options offered in workstations are RAID modes 0 and 1.
RAID 0 is a misleading term, as it actually implements no redundancy, but focuses on raising storage performance instead. By "striping" interleaved data across two drives, read bandwidth (but not write) essentially doubles. Unlike RAID 1, each additional drive in a RAID 0 configuration adds incremental storage. The downside? Not only does RAID 0 lack fault tolerance, but because your system is now relying on all drives to function, it is more prone to failure. If you have twice the number of the same drives, you are twice as likely to lose data.
RAID 1 is straightforward data redundancy, typically mirroring data onto at least two disks. Disks in the array can fail without compromising data integrity as long as one remains healthy. Because data is redundant, you are essentially sacrificing half your capacity in return for fault tolerance.
Where your data is stored and how often it is backed up can help you make the call on RAID 1. If your sacred data is on a server or shadow copies are being made frequently, you can probably pass on RAID 1, as you are effectively implementing redundancy already. But if your unique copy of data resides for extended periods of time on your individual desktop machine, RAID 1 can be an attractive option.
Several other RAID modes are available. RAID 5, supported on some models, offers a performance boost in disk-striping plus the fault-tolerance benefit of redundancy. The drawback of implementing RAID 5 is that it requires a minimum of three disks, thereby limiting its utility to higher-end, higher-price machines.